## шرес <br> cbac

## GCE MARKING SCHEME

## SUMMER 2016

Mathematics - M3 0982/01

## INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

## GCE Mathematics - M3

## Summer 2016 Mark Scheme

Q
Solution
Mark
Notes

1(a) N 2 L applied to particle
$1800-120 v=60 a$
M1 dim correct equation
Divide by 60 and $a=\frac{\mathrm{d} v}{\mathrm{~d} t}$
$\frac{\mathrm{d} v}{\mathrm{~d} t}=30-2 v$
A1 convincing

1(b) $\int \frac{d v}{30-2 v}=\int d t$
M1 correct sep. of variables
$-\frac{1}{2} \ln |30-2 v|=t(+\mathrm{C})$
A1A1 A1 for $\ln |30-2 v|$
A2 all correct, any form.
When $t=0, v=8$
m1 initial conditions used
C $=-\frac{1}{2} \ln 14$
$t=\frac{1}{2} \ln \left|\frac{14}{30-2 v}\right|$
$\mathrm{e}^{2 t}=\frac{14}{30-2 v}$
$30-2 v=14 \mathrm{e}^{-2 t}$
$v=15-7 \mathrm{e}^{-2 t}$

Limiting value of $v=\underline{15}$
m1 correct inversion at any
stage ft similar expression
A1 any correct simplified expression

B1 cao. Allow if $\mathrm{e}^{-\mathrm{kt}}, \mathrm{k}>0$.

Q
Solution
Mark
Notes
2(a). $x=A \sin \omega t+B \cos \omega t$.
$\frac{\mathrm{d} x}{\mathrm{~d} t}=v=A \omega \cos \omega t-B \omega \sin \omega t . \quad \quad \mathrm{B} 1$
$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-A \omega^{2} \sin \omega t-B \omega^{2} \cos \omega t$
M1
Hence,
$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\omega^{2} x$
Therefore motion is SHM
Value of $x$ at centre of motion $=0$
Amplitude $a=$ value of $x$ when $v=0$
$A \omega \cos \omega t-B \omega \sin \omega t=0$
$\tan \omega t=\frac{A}{B}$
$\sin \omega t=\frac{A}{\sqrt{A^{2}+B^{2}}} \cos \omega t=\frac{B}{\sqrt{A^{2}+B^{2}}}$
$a=A \frac{A}{\sqrt{A^{2}+B^{2}}}+B \frac{B}{\sqrt{A^{2}+B^{2}}}$
$a=\sqrt{A^{2}+B^{2}}$
2(b)(i) using $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$
$25=\omega^{2}\left(a^{2}-25\right)$
$169=\omega^{2}\left(a^{2}-9\right)$
Subtract
$144=16 \omega^{2}$
$\omega=3$
Amplitude $=a$
$25=3^{2}\left(a^{2}-25\right)$
Period $=\frac{2 \pi}{\omega}=\frac{2 \pi}{3}$
$a^{2}=\frac{250}{9}, a=\frac{5 \sqrt{10}}{3}=\underline{5.27(\mathrm{~m})}$
2(b)(ii) $x=\frac{5 \sqrt{10}}{3} \sin (3 t)$
$x=\frac{5 \sqrt{10}}{3} \sin (3 \times 0.3)$
$x=\underline{4.128(\mathrm{~m})}$

B1

M1
m1 either expression
m1 substitution
A1 cao
A1 convincing

B

A1 cao
M1
A1 either equation correct
m1 oe

A1 cao

M1 accept $\sin / \cos , a, \omega$

A1 ft derived $a, \omega$

A1 cao

Notes

## Alternative solution

$$
\begin{aligned}
& \text { 2(a). } x=A \sin \omega t+B \cos \omega t \text {. } \\
& x=R \sin (\omega t+\varepsilon) \\
& \text { M1 } \\
& A \sin \omega t+B \cos \omega t \\
& =R \sin \omega t \cos \varepsilon+R \cos \omega t \sin \varepsilon \\
& \text { m1 si } \\
& R \cos \varepsilon=A \\
& R \sin \varepsilon=B \\
& R=\sqrt{A^{2}+B^{2}} \\
& \text { A1 } \\
& \begin{array}{l}
R=\sqrt{A+B} \\
\varepsilon=\tan ^{-1}\left(\frac{B}{A}\right)
\end{array} \\
& \text { A1 } \\
& x=\sqrt{A^{2}+B^{2}} \sin \left(\omega t+\tan ^{-1}\left(\frac{B}{A}\right)\right. \text { ) } \\
& \text { Therefore motion is SHM }
\end{aligned}
$$

3 Auxiliary equation

$$
\begin{array}{ll}
\mathrm{m}^{2}+6 \mathrm{~m}+9=0 & \text { M1 } \\
(\mathrm{m}+3)^{2}=0 & \\
\mathrm{~m}=-3 \text { (twice) } & \text { A1 }
\end{array}
$$

CF is $x=(A+B t) \mathrm{e}^{-3 t}$
B1 ft values of m
For PI, try $x=a t+b$
M1
$\frac{\mathrm{d} x}{\mathrm{~d} t}=a$
$\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=0$
$6 a+9(a t+b)=27 t$
A1
Comparing coefficients
m1
$9 a=27$
$a=3$
$18+9 b=0$
$b=-2$
General solution is
$x=(A+B t) \mathrm{e}^{-3 t}+3 t-2$
When $t=0, x=0$
$0=A-2$
$A=2$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=-3(A+B t) \mathrm{e}^{-3 t}+B \mathrm{e}^{-3 t}+3$
B1 ft similar expressions
When $t=0, \frac{\mathrm{~d} x}{\mathrm{~d} t}=0$,
$0=-3 A+B+3$
$B=3$
$x=(2+3 t) \mathrm{e}^{-3 t}+3 t-2$
When $t=2$
$x=8 \mathrm{e}^{-6}+4$
A1 cao
$x=\underline{4 .(02)(4.01983)}$
A1 ft similar expressions
Q
Mark
Notes

4(a). Use of N2L $8 g-0.4 v^{2}=8 a$
$196-v^{2}=20 v \frac{\mathrm{~d} v}{\mathrm{~d} x}$

4(b) $\quad \int \mathrm{d} x=\int \frac{20 v \mathrm{~d} v}{196-v^{2}}$
$x(+\mathrm{C})=20 \times-\frac{1}{2} \ln \left|196-v^{2}\right|$
$x(+\mathrm{C})=-10 \ln \left|196-v^{2}\right|$
When $x=0, v=0$
C $=-10 \ln 196$
$x=10 \ln \left|\frac{196}{196-v^{2}}\right|$
When $v=10$
$x=10 \ln \frac{196}{96}=\underline{7.14(\mathrm{~m})}$

4(c) $196-v^{2}=20 \frac{\mathrm{~d} v}{\mathrm{~d} t}$

$$
\begin{aligned}
& \int \mathrm{d} t=\int \frac{20 d v}{14^{2}-v^{2}} \\
& t=\frac{20}{2 \times 14} \ln \left|\frac{14+v}{14-v}\right|+(\mathrm{C})
\end{aligned}
$$

When $t=0, v=0$
$\mathrm{C}=0$
$t=\frac{5}{7} \ln \left|\frac{14+v}{14-v}\right|$
$\mathrm{e}^{1.4 t}=\frac{14+v}{14-v}$
$v=14\left(\frac{e^{1 \cdot 4 t}-1}{e^{1 \cdot 4 t}+1}\right)$
When $t=2$
$v=\underline{12.39}$
m1
M1
A1 use of $a=v \frac{\mathrm{~d} v}{\mathrm{~d} x}$, convincing

M1 correct sep variables
A1A1 A1 for $\ln \left|196-v^{2}\right|$,
A1 all correct

A1 cao

A1 cao

M1 correct sep variables
A1A1 A1 for $\ln \left|\frac{14+v}{14-v}\right|$,
A1 all correct
m1 used
A1
m1 inversion

A1 cao any correct expres.

A1 cao

Q
Mark
Notes

5 Speed of $A$ just before string becomes taut is given by
$v^{2}=u^{2}+2 a s, a=( \pm) 9.8, s=(1.8-0.2) \quad$ M1
$v^{2}=0+2 \times 9.8 \times 1.6$
$v=5.6\left(\mathrm{~ms}^{-1}\right)$
A1

Impulse $=$ change in momentum
M1
used
Apply to $A$
$J=2 \times 5.6-2 v$
A1 ft answer in (a)
Apply to $B$
$J=5 v$
B1
Solving simultaneously
m1
$2 \times 5.6-2 v=5 v$
$7 v=11.2$
Speed of $B=\underline{1.6\left(\mathrm{~ms}^{-1}\right)}$
A1 cao
$J=5 v=\underline{8(\mathrm{Ns})}$
A1 ft speed of $B$
Q
Solution
Mark
Notes

6(a)


6(b) Resolve vertically
$S \cos 60^{\circ}+R=25 g$
Resolve horizontally
$F=S \sin 60^{\circ}$
$F=0.3 R$
$0.3 R=S \sin 60^{\circ}$
$R=\frac{\sqrt{3}}{2 \times 0 \cdot 3} S$
$0.5 S+R=25 g$
$0.5 S+\frac{\sqrt{3}}{2 \times 0 \cdot 3} S=25 \times 9.8$
$S=72.34(\mathrm{~N})$
$R=\underline{208.83(\mathrm{~N})}$

6(c) Moments about $A$

$$
\begin{aligned}
& S x=25 g \times 5 \cos 60^{\circ} \\
& x=\frac{25 \times 9.8 \times 5 \times \cos 60^{\circ}}{72.340711} \\
& x=\underline{8.46(69)}
\end{aligned}
$$

equation, no missing no extra force. $\sin / \mathrm{cos}$ A1
A2 -1 each error

M1 equation, no missing, no extra force. sin/cos
m1 eliminating one variable Depends on both M's
A1 cao
A1 cao

M1 equation, no missing, no extra force. dim correct
A1 LHS correct
A1 RHS correct

A1 cao

