wjec cbac

GCE MARKING SCHEME

SUMMER 2016

Mathematics – M3 0982/01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the Summer 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE Mathematics - M3

Summer 2016 Mark Scheme

Q	Solution	Mark	Notes
1(a)	N2L applied to particle 1800 - 120v = 60a Divide by 60 and $a = \frac{dv}{dt}$	M1	dim correct equation
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 30 - 2v$	A1	convincing
1(b)	$\int \frac{dv}{30 - 2v} = \int dt$	M1	correct sep. of variables
	$-\frac{1}{2}\ln 30-2v = t (+C)$	A1A1	A1 for $\ln 30 - 2v $
			A2 all correct, any form.
	When $t = 0, v = 8$	m1	initial conditions used
	$C = -\frac{1}{2}\ln 14$		
	$t = \frac{1}{2} \ln \left \frac{14}{30 - 2\nu} \right $		
	$e^{2t} = \frac{14}{30-2y}$	m1	correct inversion at any
	$30 - 2v = 14e^{-2t}$		stage ft similar expression
	50 - 2v = 14e $v = 15 - 7e^{-2t}$	A1	any correct simplified

any correct simplified A1 expression

cao. Allow if e^{-kt}, k>0. **B**1

Limiting value of $v = \underline{15}$

Q	Solution	Mark	Notes
2(a).	$x = A \sin \omega t + B \cos \omega t.$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = v = A\omega\cos\omega t - B\omega\sin\omega t.$	B1	
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -A\omega^2 \mathrm{sin}\omega t - B\omega^2 \mathrm{cos}\omega t$	M1	
	Hence, $\frac{d^2x}{dt^2} = -\omega^2 x$	A1	convincing
	Therefore motion is SHM		
	Value of <i>x</i> at centre of motion $= 0$	B 1	
	Amplitude $a =$ value of x when $v = 0$ $A \omega \cos \omega t - B \omega \sin \omega t = 0$ A	M1	
	$\sqrt{A^2+B^2}$ $\sqrt{A^2+B^2}$	m1	either expression
	$a = A \frac{A}{\sqrt{A^2 + B^2}} + B \frac{B}{\sqrt{A^2 + B^2}}$ $a = \sqrt{A^2 + B^2}$	A1	cao
			cao
2(b)(i)	using $v^2 = \omega^2 (a^2 - x^2)$ 25 = $\omega^2 (a^2 - 25)$	M1	
	$\frac{25}{169} = \omega^2 (a^2 - 9)$	A1	either equation correct
	Subtract $144 = 16\omega^2$ $\omega = 3$	m1	oe
	Amplitude = a 25 = $3^{2}(a^{2} - 25)$	m1	substitution
	Period = $\frac{2\pi}{\omega} = \frac{2\pi}{3}$	A1	cao
	$a^2 = \frac{250}{9}, a = \frac{5\sqrt{10}}{3} = \frac{5.27 \text{ (m)}}{3}$	A1	сао
2(b)(ii	$x = \frac{5\sqrt{10}}{3}\sin(3t)$	M1	accept sin/cos, a , ω
	$x = \frac{5\sqrt{10}}{3} \sin(3 \times 0.3)$	A1	ft derived a , ω
	$x = 4.128 (\mathrm{m})$	A1	cao

Alternative solution

Q

2(a).	$x = A\sin\omega t + B\cos\omega t.$ $x = R\sin(\omega t + \varepsilon)$	M1	
	$A\sin\omega t + B\cos\omega t$ = $R\sin\omega t \cos\varepsilon + R\cos\omega t \sin\varepsilon$ $R\cos\varepsilon = A$	m1	si
	$R\sin\varepsilon = B$		
	$R = \sqrt{A^2 + B^2}$ $\varepsilon = \tan^{-1} \left(\frac{B}{A} \right)$	A1	
	$\varepsilon = \tan^{-1}\left(\frac{B}{A}\right)$	A1	
	$x = \sqrt{A^2 + B^2} \sin(\omega t + \tan^{-1}\left(\frac{B}{A}\right))$		
	Therefore motion is SHM	A1	
	Value of <i>x</i> at centre of motion $= 0$	B1	
	Amplitude = $\sqrt{A^2 + B^2}$	A1	

Q	Solution	Mark	Notes
3	Auxiliary equation $m^2 + 6m + 9 = 0$ $(m + 3)^2 = 0$	M1	
	m = -3 (twice) CF is $x = (A + Bt)e^{-3t}$	A1 B1	ft values of m
	For PI, try $x = at + b$ $\frac{dx}{dt} = a$ $\frac{d^2x}{dt^2} = 0$	M1	
	6a + 9(at+b) = 27t	A1	
	Comparing coefficients	m1	
	9a = 27 a = 3 18 + 9b = 0 b = -2 General solution is $x = (A + Bt)e^{-3t} + 3t - 2$	A1	both values
	When $t = 0$, $x = 0$	m1	used
	$ \begin{array}{l} 0 &= A - 2 \\ A &= 2 \end{array} $	A1	cao
	$\frac{dx}{dt} = -3(A + Bt) e^{-3t} + Be^{-3t} + 3$	B1	ft similar expressions
	When $t = 0$, $\frac{\mathrm{d}x}{\mathrm{d}t} = 0$,		
	0 = -3A + B + 3 $B = 3$	A1	ft similar expressions
	$x= (2+3t)e^{-3t} + 3t - 2$ When $t = 2$ $x = 8e^{-6} + 4$ x = 4.(02) (4.01983)	A1	cao

4(a). Use of N2L
$$8g - 0.4v^2 = 8a$$

196 - $v^2 = 20v \frac{dv}{dx}$

Solution

Q

4(b)
$$\int dx = \int \frac{20v dv}{196 - v^2}$$
$$x (+C) = 20 \times -\frac{1}{2} \ln \left| 196 - v^2 \right|$$
$$x (+C) = -10 \ln \left| 196 - v^2 \right|$$
When $v = 0$, $v = 0$

When
$$x = 0, v = 0$$

C = -10ln196
 $x = 10ln \left| \frac{196}{196 - v^2} \right|$

4(c)
$$196 - v^2 = 20 \frac{dv}{dt}$$

 $\int dt = \int \frac{20 dv}{14^2 - v^2}$
 $t = \frac{20}{2 \times 14} \ln \left| \frac{14 + v}{14 - v} \right| + (C)$

When
$$t = 0, v = 0$$

 $C = 0$
 $t = \frac{5}{7} \ln \left| \frac{14 + v}{14 - v} \right|$
 $e^{1.4t} = \frac{14 + v}{14 - v}$
 $v = 14 \left(\frac{e^{1.4t} - 1}{e^{1.4t} + 1} \right)$
When $t = 2$
 $v = \frac{12.39}{12.39}$

M1
A1 use of
$$a = v \frac{dv}{dx}$$
, convincing

A1A1 A1 for
$$\ln |196 - v^2|$$
,
A1 all correct

- m1
- A1 cao
- A1 cao
- M1 correct sep variables
- A1A1 A1 for $\ln \left| \frac{14 + v}{14 v} \right|$, A1 all correct
- m1 used A1
- m1 inversion
- A1 cao any correct expres.
- A1 cao

Q	Solution	Mark	Notes
5	Speed of <i>A</i> just before string becomes taut is given by $v^2 = u^2 + 2as, a = (\pm)9.8, s = (1.8-0.2)$ $v^2 = 0 + 2 \times 9.8 \times 1.6$ $v = 5.6 \text{ (ms}^{-1})$	M1 A1	
	Impulse = change in momentum Apply to A $J = 2 \times 5.6 - 2v$ Apply to B J = 5v	M1 A1 B1	used ft answer in (a)
	Solving simultaneously $2 \times 5.6 - 2v = 5v$ 7v = 11.2	m1	
	Speed of $B = \underline{1.6 \text{ (ms}^{-1})}$	A1	cao
	$J = 5v = \underline{8 (Ns)}$	A1	ft speed of <i>B</i>

A2

B1

used

Notes

6(a)

6(b)	Resolve vertically	
	$S\cos 60^\circ + R = 25g$	

Resolve horizontally

 $F= Ssin60^{\circ}$

$$F = 0.3R$$

$$0.3R = S\sin 60^{\circ}$$

$$R = \frac{\sqrt{3}}{2 \times 0.3}S$$

$$0.5S + R = 25g$$

$$0.5S + \frac{\sqrt{3}}{2 \times 0.3}S = 25 \times 9.8$$

$$S = \frac{72.34 \text{ (N)}}{2}$$

 $R = \frac{72.34 (N)}{208.83 (N)}$

6(c) Moments about A

$$Sx = 25g \times 5\cos 60^{\circ}$$

$$x = \frac{25 \times 9 \cdot 8 \times 5 \times \cos 60^{\circ}}{72 \cdot 340711}$$
$$x = \underline{8.46(69)}$$

M1	equation, no missing,
A1	no extra force. sin/cos
M1	equation, no missing
A1	no extra force. sin/cos

-1 each error

m1	eliminating one variable
A1 A1	Depends on both M's cao cao

M1	equation, no missing,
	no extra force. dim
	correct

A1 LHS correct

A1 cao